AuGusT 2011

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),

DING ET AL.

Estimate of the Predictability of Boreal Summer and Winter
Intraseasonal Oscillations from Observations

RUIQIANG DING AND JIANPING LI
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

KYONG-HWAN SEO

Department of Atmospheric Sciences, Pusan National University, Busan, South Korea

(Manuscript received 30 July 2010, in final form 15 February 2011)

ABSTRACT

Tropical intraseasonal variability (TISV) shows two dominant modes: the boreal winter Madden—Julian
oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO). The two modes differ in intensity,
frequency, and movement, thereby presumably indicating different predictabilities. This paper investigates
differences in the predictability limits of the BSISO and the boreal winter MJO based on observational data.
The results show that the potential predictability limit of the BSISO obtained from bandpass-filtered (30-80
days) outgoing longwave radiation (OLR), 850-hPa winds, and 200-hPa velocity potential is close to 5 weeks,
comparable to that of the boreal winter MJO. Despite the similarity between the potential predictability limits
of the BSISO and MJO, the spatial distribution of the potential predictability limit of the TISV during summer
is very different from that during winter. During summer, the limit is relatively low over regions where the TISV
is most active, whereas it is relatively high over the North Pacific, North Atlantic, southern Africa, and South
America. The spatial distribution of the limit during winter is approximately the opposite of that during summer.
For strong phases of ISO convection, the initial error of the BSISO shows a more rapid growth than that of the
MJO. The error growth is rapid when the BSISO and MJO enter the decaying phase (when ISO signals are
weak), whereas it is slow when convection anomalies of the BSISO and MJO are located in upstream regions
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(when ISO signals are strong).

1. Introduction

The intraseasonal oscillation (ISO) is a dominant
mode of low-frequency variability in the tropical tro-
posphere (e.g., Madden and Julian 1994). The mode
undergoes a distinct seasonal variation, with most active
oscillation during the northern winter and spring, and
weaker activity during the northern summer (Slingo
et al. 1999). The boreal winter ISO, often referred to as
the Madden—Julian oscillation (MJO; Madden and
Julian 1994), is characterized by eastward-propagating
tropical convective anomalies and associated circulation
anomalies with time scales of about 30-70 days. In
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contrast, the boreal summer ISO (BSISO) has a com-
plex structure that shows both eastward and northward
propagation (Yasunari 1979; Lawrence and Webster
2002).

Employing the nonlinear local Lyapunov exponent
(NLLE) method, Ding et al. (2010) showed that the
potential predictability limit of the ISO obtained from
bandpass-filtered (30-80 days) outgoing longwave radi-
ation (OLR) and wind fields can exceed 5 weeks, which
is well above the 1-week predictability of background
noise due to bandpass filtering. In contrast, an investi-
gation of the predictability of the real-time MJO index,
as introduced by Wheeler and Hendon (2004), reveals
a predictability limit of about 3 weeks. However, given
that Ding et al. (2010) used year-round daily data,
which tends to be dominated by the stronger boreal
winter phase (MJO) of the tropical intraseasonal var-
iability (TISV), their study mainly considers boreal
winter MJO cases. The predictability of the northern
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summer ISO obtained from observational data re-
mains unknown.

In the present study, the NLLE approach is employed
to separately investigate the predictability limits of
the boreal summer ISO and the boreal winter MJO,
based on observed daily OLR, 850-hPa wind fields, and
200-hPa velocity potential, in order to identify the dif-
ferences in the predictability of the boreal summer ISO
and the boreal winter MJO (for brevity, we hereafter
refer to the boreal summer ISO as the BSISO and the
boreal winter MJO as the MJO). In addition, the po-
tential predictability limit of the TISV may be different
in different tropical regions; therefore, it is interesting to
compare the spatial distributions of the potential pre-
dictability limit of the TISV during summer and winter.
To examine if the predictability of the BSISO and MJO
is phase dependent, the predictabilities of the BSISO
and MJO for different phases of strong ISO events are
also compared.

2. Application of the NLLE approach
a. NLLE of an n-dimensional dynamical system

Consider a general n-dimensional nonlinear dynami-
cal system whose evolution is governed by

dx

& =F(), (M

where x =[x, (1), x,(1),...... , xn(t)]T is the state vector
at the time ¢, the superscript T is the transpose, and F
represents the dynamics. The evolution of a small error
8=1[8,(0), 8,(t),...... , Bn(t)]T, superimposed on a state
X, is governed by the nonlinear equations:

d
28=1005 + G(x.8), @)

where J(x)é are the tangent linear terms, and G(x, ) are
the high-order nonlinear terms of the error 8. Because of
some difficulties in solving the nonlinear problem, most
previous studies (e.g., Lorenz 1965; Eckmann and
Ruelle 1985; Yoden and Nomura 1993; Kazantsev 1999;
Ziehmann et al. 2000) assumed that the initial pertur-
bations were sufficiently small that their evolution could
be approximately governed by the tangent linear model
(TLM) of the nonlinear model:

d
—8=1(x3. 3)

However, the evolution of the linear error is character-
ized by continuous exponential growth, which is not
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applicable to situations in which the initial errors are not
very small (Lacarra and Talagrand 1988; Mu 2000; Ding
and Li 2007). Therefore, the nonlinear behaviors of er-
ror growth should be considered in determining the limit
of predictability. Without a linear approximation, the
solutions of Eq. (2) can be obtained by numerically in-
tegrating it along the reference solution x from 7 =, to
ty+

8, =1(x),8,7)8, 4)

where 8, = 8(t, + 7),x, = x(t,), 6, = 8(,), and n(x,, 8, )
is the nonlinear propagator. The NLLE is then defined
as

L ]|8, |l
A(XO, 60, T) = ; lnm, (5)

where A(x,, 8, 7) depends in general on the initial state
X, in phase space, the initial error 8, and time 7. The
NLLE differs from existing local or finite-time Lyapu-
nov exponents defined based on linear error dynamics
(Yoden and Nomura 1993; Kazantsev 1999; Zichmann
et al. 2000), which depend solely on the initial state x;,
and time 7, not on the initial error 8,. The ensemble
mean NLLE over the global attractor of the dynamical
system is given by

X(3y.7) = J A%y, 8,,7) dx
Q

= </\(X07 507 T)>N’ (N — ), (6)

where () represents the domain of the global attractor of
the system and ( ), denotes the ensemble average of
samples of sufficiently large size N (N — ). The mean
relative growth of initial error (RGIE) can be obtained
by

®(8,,7) = exp[A(8,, T)7]. 7)
Using the theorem from Ding and Li (2007), we obtain
B8y, 7) L c(N—>), (8)

where — denotes the convergence in probability and
cis a constant that depends on the converged probability
distribution P of error growth. The constant ¢ can be
considered as the theoretical saturation level of 6(60, 7).
Once the error growth reaches the saturation level, almost
all information on initial states is lost and the predic-
tion becomes meaningless. Using the theoretical satu-
ration level, the limit of dynamical predictability can be
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quantitatively determined (Li et al. 2006; Ding and Li
2007; Li and Wang 2008).

b. Estimating the NLLE from an observational
time series

For systems whose equations of motion are explicitly
known, such as the Lorenz system, we can directly cal-
culate the mean NLLE via numerical integration of the
system and its error evolution equations (Ding and Li
2007). However, some parameters and external forcing
terms in the dynamic equations of atmospheric motion
are explicitly unknown, and there exist uncertainties in
determining these parameters and external forcing
terms. It is possible to estimate the NLLE by making use
of the large amounts of observational data available for
the atmosphere. In a previous study, we developed an
algorithm that yields estimates of the NLLE and its
derivatives based on atmospheric observational data
(Ding et al. 2008). Over the past few years, the algorithm
has been further improved (Li and Ding 2011). The
general idea of the algorithm is to find local analogs of
the evolution pattern from observational time series.
The local analogs are searched for based on the initial
information and evolution information at two different
time points in the time series. If the initial distance at two
different time points is small and if their evolutions are
analogous over a very short interval, it is highly likely that
the two points were analogous at the initial time. This
analog is referred to as a “local dynamical analog.” A
brief description of the algorithm is given in the appendix.

As noted by Lorenz (1969), a sufficiently long time
series is required when using historical analogs to study
atmospheric predictability. It is almost impossible to
find good natural analogs within current libraries of
historical atmospheric data over large regions such as
the Northern Hemisphere. However, it should be noted
that the local dynamical analog is searched for from the
observational time series for a small local region, for
which the small number of spatial degrees of freedom
makes it possible to find good local analogs within cur-
rent libraries of historical atmospheric data, which al-
lows an ensemble average (Van den Dool 1994). In the
present study, the number of the spatial degrees of
freedom that characterizes the BSISO and MJO is re-
duced to ~2 by extracting their dominant modes.
Therefore, current records of observational data (1979-
2008) enable us to find good analogs by using the prin-
cipal components (PCs) of the dominant EOF modes
over the tropics, despite the relatively short length of the
records (Van den Dool 1994).

One example of the NLLE algorithm from the
Lorenz96 40-variable model (a low-order proxy for an
atmospheric model; Lorenz 1996) reveals that the
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algorithm is entirely applicable in estimating the mean
error growth from an experimental time series (Li and
Ding 2011). The algorithm can also be applied in studies
of atmospheric predictability. Based on atmospheric
observational data, the NLLE approach has been used
to investigate decadal changes in weather predictability
(Ding et al. 2008), the temporal-spatial distribution of
the predictability of monthly and seasonal means of cli-
mate variables (Li and Ding 2008), and the predictability
limit of the MJO (Ding et al. 2010). In the present study,
we explore the potential predictability limits of the
BSISO and MJO based on the NLLE approach.

3. Data and methodology

Daily OLR data from the National Oceanic and At-
mospheric Administration (NOAA) are used to repre-
sent large-scale tropical convective activity over tropical
ocean and land. Continuous OLR records are available
from 1 January 1979 to the present; consequently, we use
the continuous 1979-2008 time series in the global
tropical strip (30°S-30°N). Primary atmospheric circu-
lation data are extracted from the National Centers for
Environmental Prediction—National Center for Atmo-
spheric Research (NCEP-NCAR) reanalysis products
(Kalnay et al. 1996), which contain a similar record of
850-hPa winds and 200-hPa velocity potential. Both the
OLR and 850-hPa winds are combined and analyzed on
a 5° latitude-longitude grid. The 200-hPa velocity po-
tential is analyzed alone on a 5° latitude-longitude grid
covering the domain from 30°S to 30°N.

To obtain the intraseasonal signal, the seasonal cycle
of daily OLR and 850-hPa winds is first removed by
subtracting the time mean and the first three harmonics
of the annual cycle, leaving the anomaly fields, which are
then bandpass filtered to retain periods in the range
of 30-80 days. To identify the dominant ISO signal
from the extended boreal summer [May-September
(MIJAS)] over the tropics (20°S-30°N), an empirical
orthogonal function (EOF) analysis is performed of
the combined fields of the bandpass-filtered OLR and
850-hPa winds. Similarly, the dominant MJO signal from
the extended boreal winter [November-March (NDJFM))]
over the tropics (25°S-25°N) is extracted by an EOF anal-
ysis of the combined fields of the bandpass-filtered OLR
and 850-hPa winds. In computing the EOFs of combined
fields, each field was normalized by its global variance
(area-averaged variance over the tropics) before input,
following Wheeler and Hendon (2004) and Seo et al.
(2009). The spatial patterns of the dominant EOF modes
provide a good reflection of large-scale variations in
tropical convection and associated surface wind fields;
the corresponding PCs of the dominant EOF modes
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show how the spatial patterns of these modes oscillate
over time.

To investigate the predictability of the large-scale
divergent circulation at the 200-hPa level associated
with the BSISO and MJO, we also perform an EOF
analysis of the 200-hPa velocity potential during the
extended boreal winter and extended boreal summer,
respectively. Before the EOF analysis, annual cycles of
the 200-hPa velocity potential field were removed and
intraseasonal periods were captured using a 30-80-day
Lanczos filter. EOF analysis isolates the spatial structure
of the most dominant modes as well as their propagation
in time.

The predictability limits of the BSISO and MJO are
investigated by applying the NLLE approach to the PC
time series of the dominant EOF modes. Similar to Ding
et al. (2010), the vector Z in the two-dimensional phase
space can be defined by the first two PCs:

Z(r) = {PCL(1), PC2(1)}. (9)

The error of the vector Z is measured as the absolute
error \/ (APC1)* + (APC2)?, where APC1 represents the
error in the PC1 axis and APC2 represents the error in
the PC2 axis. In the two-dimensional phase space, the
mean error growth of the vector Z with time can be
obtained using the NLLE approach. In the algorithm
given in the appendix, the time series of a single variable
x is replaced by that of the vector Z; the error of the
variable x is also replaced by the absolute error of the
vector Z. Similarly, the vector Z, consisting of a greater
number of PCs (=3), may be used to estimate the NLLE
using the algorithm given in the appendix. Using the PCs
that respectively represent the BSISO and MJO, the
seasonal differences in the predictability limits of the
BSISO and MJO may be investigated.

Wheeler and Hendon (2004) recently developed a new
MJO index based on the first two EOFs of the combined
fields of near-equatorially averaged (15°S-15°N) 850- and
200-hPa zonal winds, and OLR data. The projection of
daily observation data onto such multiple-variable EOFs
yields PC time series that are able to strongly discriminate
the 30-80-day signal. Hence, the necessity for time fil-
tering is reduced and the resulting PC time series could be
calculated in real time. The pair of PC time series that
forms the index is referred to as the real-time multivariate
MJO series 1 (RMM1) and 2 (RMM?2). Although RMM1
and RMM?2 describe the evolution of the MJO along
the equator, which is independent of season, the off-
equatorial structure captured by these indices still exhibits
strong seasonality. Therefore, we can further explore the
seasonal differences in the predictability of the BSISO
and MJO based on RMM indices, which consist of the
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vector Z in Eq. (9). The predictability of the BSISO and
MJO, as obtained from unfiltered data, is different from
the potential predictability obtained from bandpass-
filtered data, as it provides a measure of real-time pre-
diction skill.

To investigate the dependence of the predictability of
the BSISO and MJO on different phases, strong ISO
events are identified by selecting the dates when either
of the two leading PCs exceeding 1.5 standard deviations
during the 30-yr period, following Hendon et al. (2000)
and Seo et al. (2005). According to the sign of the PCs,
the four phases of the ISO are then designated as PC1+,
PC2+, PC1—, and PC2— with each succeeding phase
leading the preceding phase by about a quarter of a cy-
cle. Null events are defined as the cases where both
leading PCs are simultaneously less than 0.5 standard
deviations. The predictability is determined in terms of
the mean error growth derived using the NLLE ap-
proach based on the dates initialized for these five ex-
treme phases.

4. Results

Figures 1 and 2 show the spatial structures of the two
leading EOFs of the combined filtered OLR and
850-hPa winds during the extended winter (NDJFM) and
extended summer (MJJAS), respectively. According to
the criteria proposed by North et al. (1982), the first two
EOFs are well separated from the remaining EOFs and
contain the meaningful dynamical signal for both the
boreal winter and boreal summer. The first two EOFs
during both winter and summer generally appear as
a pair that together describe the large-scale propagating
convective anomalies and associated wind anomalies.
Compared with the extended winter, the first two EOFs
during the extended summer show markedly different
characteristics in terms of off-equatorial structure and
propagation, indicating the seasonality of the ISO.

The first two EOFs during the extended winter depict
the familiar structure and evolution of the MJO (Figs.
1a,b). In EOF1, enhanced convection is evident over the
eastern Indian Ocean and the Maritime Continent,
while reduced convection is seen in the central Pacific.
Associated westerly wind anomalies exist over the In-
dian Ocean, and easterlies exist over the Pacific. In
EOF2, enhanced convection moves eastward into the
western Pacific. As it passes by the Australian landmass,
it shifts southward to be most concentrated at about
10°S. At the same time, reduced convection in the Indian
Ocean builds as enhanced convection moves out of the
region. The eastward movement of 850-hPa wind anom-
alies is quicker than convection; consequently, enhanced
convection in EOF2 is entirely within the westerlies
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FIG. 1. EOF analysis of the combined fields of 30-80-day-filtered OLR (W m ) and 850-hPa
winds (m s~ 1) during the extended winter (NDJFM) over the tropics (25°S-25°N). (a) EOF1,
(b) EOF2, and (c) PC1 and PC2 from 1 Nov 1987 to 31 Mar 1988.

(over the western Pacific). EOF?2 is spatially in quad-
rature with EOF1. Taken as a pair, these structures are
in agreement with the results of previous studies (e.g.,
Weickmann et al. 1985; Ferranti et al. 1990; Matthews
and Kiladis 1999; Innes and Slingo 2003; Wheeler
and Hendon 2004) and are effective in capturing the
southern summer MJO. The PC time series shows the
time-varying amplitude of the EOF spatial structures.
A subset of the PC time series (winter of 1987/88) is
shown in Fig. 1c. PC1 leads PC2 by about a quarter of
a cycle, consistent with the eastward propagation of
the MJO.

For the northern summer season, the first two EOFs
show eastward and northward propagation of enhanced
convection in the Indian Ocean sector (Figs. 2a,b). In
EOF]1, enhanced convection is present over the eastern
equatorial Indian Ocean; in EOF2, it moves northward
and eastward into India, the Bay of Bengal, and the
Maritime Continent. The associated wind anomalies

also show eastward and northward movement, with
northeasterly wind anomalies ahead of the enhanced
convection (EOF1, EOF2), and southwesterlies behind
the convection (EOF2). Because EOF analysis is per-
formed by using information at all longitudes, it is ef-
fective in picking up the global signature of the BSISO.
In addition to the typical intraseasonal variability of the
Indian monsoon, the analysis reveals the variability over
the eastern Pacific and Caribbean. All of these aspects
of the BSISO that are apparent in the first two EOFs
are consistent with those reported in previous studies
(Kemball-Cook and Wang 2001; Lawrence and Webster
2002; Wheeler and Hendon 2004), which explored the
major characteristics of the BSISO via composite anal-
yses of different phases of the ISO. Figure 2c shows the
PC time series of combined fields for the summer of 1987.
PC2 leads PC1 by about a quarter of a cycle, describing
the eastward- and northward-propagating feature of the
BSISO.
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F1G.2. Asin Fig. 1, but for EOF analysis during the extended summer (MJJAS) over the tropics
(20°S=30°N). In (c), PC1 and PC2 are shown from 1 May 1987 to 30 Sep 1987.

The above analysis shows that the first two EOFs are
able to capture the main characteristics of the BSISO
and MJO; consequently, their corresponding PCs may
be used to investigate differences in the predictability of
the BSISO and MJO. The mean error growth of the
vector Z, which consists of the first two PCs, can be
obtained using the NLLE approach. Figures 3a,b show
the mean error growth of the vector Z for the BSISO
and MJO, respectively. In both cases, the mean error of
the vector Z shows a rapid initial increase before slowing
down and then finally reaching saturation. As noted by
Ding et al. (2010), it is possible that mechanisms with
different time scales determine the mean error growth of
the ISO during different phases of error growth. In the
early phase, involving rapid growth of the initial error,
the initial conditions may play an important role in de-
termining the mean error growth of the ISO. After
about 2 weeks, in contrast, the error growth appears
to be more strongly influenced by the slowly varying
boundary conditions, such as external SST forcing. Recent

observational and modeling studies have shown that
ocean—atmosphere coupling is important for mainte-
nance of the ISO, which could lead to an extension of the
theoretical predictability of the ISO (Fu et al. 2007; Seo
et al. 2007, 2009; Kim et al. 2008). From this viewpoint,
ocean—atmosphere coupling could extend the predi-
ctability of the ISO to a longer lead time. The mean
error growth ultimately reaches the saturation level, in-
dicating that almost all the information on initial states is
lost and that the prediction becomes meaningless. There-
fore, the potential predictability limit is defined as the
time at which the error reaches 95% of its saturation
level. From Figs. 3a.,b, the potential predictability limits
of the BSISO and MJO are about 32 and 34 days, re-
spectively. This result indicates that the potential pre-
dictability limit of the MJO is comparable to (but slightly
higher than) that of the BSISO.

The potential predictability limits of the BSISO and
MJO, as estimated using observational data, are only
attained when the models are perfect. Existing models
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FIG. 3. (a) Mean error growth of the vector Z in the two-
dimensional phase space defined by the first two PCs of EOF anal-
ysis of the combined filtered OLR and 850-hPa winds during the
extended summer (MJJAS). (b) Asin (a), but for mean error growth
of the vector Z during the extended winter (NDJFM). The dashed
line represents the 95% level of the saturation value, as obtained by
taking the average of the mean error growth after 35 days. The ®
denotes the mean error of the vector Z.

are commonly poor in simulating the ocean—-atmosphere
interactions, thereby making it difficult to attain the
extended predictability from ocean—-atmosphere cou-
pling. The skill of these models is derived mainly from
the information contained in the initial states of the at-
mosphere and ocean. Therefore, most existing models
produce low estimates of the prediction skill of the ISO.
In Figs. 3a,b, the time taken for the mean error of the
vector Z to enter the slowly growing phase is around
19 days for the MJO, and around 15 days for the BSISO.
These times may represent the predictability of the MJO
and the BSISO based mainly on the ISO-MJO signals
at the respective initial states. It is evident that during
the early phase of error growth, the initial error of the
BSISO increases more quickly than that of the MJO.
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The initially rapid growth of the BSISO error is probably
due to its relatively complex spatial structure and
propagation pattern (with stronger nonlinearity and
instability, which causes initial errors to grow more rap-
idly). If models with poor representation of the ocean—
atmosphere coupling are used to predict the ISO, they
generally tend to produce more skillful predictions during
winter than during summer.

Figures 4 and 5 show the spatial patterns of the two
leading EOFs of 200-hPa velocity potential during the
extended boreal winter (NDJFM) and extended boreal
summer (MJJAS), respectively. For both seasons, the
two leading EOFs account for a large portion of the
total variance (around 80%), and are well separated
from the remaining EOFs. During the extended boreal
winter, enhanced divergence (negative velocity poten-
tial anomalies) in EOF1 is located over the eastern In-
dian Ocean and the Maritime Continent; it moves to the
western Pacific in EOF2, with the center occurring south
of the equator. Together with the PC time series, these
first two EOFs describe a regular eastward propagation
of the large-scale divergent circulation associated with
intraseasonal convective activity. The first two EOFs
during the extended boreal summer show similar spa-
tial patterns to those during the extended boreal winter,
with the differences being mainly in the location of
the divergence and convergence centers. The eastward
propagation of large-scale divergent circulation at 200 hPa
is prominent during summer, but the northward propa-
gation over the Asian summer monsoon region is not
clear. As in Eq. (1), the vector Z, consisting of PC1
and PC2 during summer (winter), represents the BSISO
(MJO) activity. Figures 6a,b show the mean error growth
of the vector Z for the BSISO and MJO, respectively.
The predictability limit of the BSISO is the same as that
of the MJO, being around 32 days. These limits, de-
termined from 200-hPa velocity potential, are compa-
rable to those determined from combined OLR and
850-hPa winds.

However, previous studies suggest that the predict-
ability of the 200-hPa velocity potential associated with
the MJO in numerical models is much longer than that
of MJO-related rainfall (Waliser et al. 2003; Reichler
and Roads 2005). The relatively high predictability of
combined OLR and 850-hPa winds in the present study
probably arises because the first two EOFs of combined
OLR and 850-hPa winds only capture the large-scale
circulation features associated with the BSISO and MJO.
In fact, the two PCs of combined OLR and 850-hPa winds
are closely related to those of the 200-hPa velocity po-
tential. PC1 and PC2 of combined OLR and 850-hPa
winds during winter have correlation coefficients of 0.90
and 0.92 with those of the 200-hPa velocity potential for
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FIG. 4. As in Fig. 1, but for EOF analysis of 30-80-day-filtered 200-hPa velocity potential
(X10° m? s~ ') during the extended winter (NDJFM) over the tropics (30°S-30°N).

1979-2008, respectively. This finding indicates that the
first two EOFs of combined OLR and 850-hPa winds are
closely coupled with those of the 200-hPa velocity po-
tential, thereby giving a similar predictability of the
BSISO and MJO. The total variance explained by the
two leading EOFs is relatively small (less than 20%) for
combined OLR and 850-hPa winds, suggesting that
some BSISO-MJO-related characteristics are not en-
tirely reflected by these two EOFs. EOF3 and EOF4 in
the winter MJO show some complicated behavior for
combined OLR and 850-hPa winds, with convective
activity occurring more to the east of 100°E (Fig. 7). Seo
and Kim (2003) reported that EOF1 and EOF2 of the
springtime OLR field along the equator clearly show the
eastward-propagating OLR variability, while EOF3
shows a stationary convection behavior. Similar to the
winter MJO, the spatial patterns of EOF3 and EOF4 in
the BSISO are also more complicated than those of
EOF1 and EOF?2 for combined OLR and 850-hPa winds
(Fig. 8). If a greater number of PCs (=3) are used to

calculate the mean error growth of the BSISO and MJO,
their predictability would be lower for combined OLR
and 850-hPa winds. Figures 9a,b shows the mean error
growth of the vector Z, which consists of the first three
PCs, for the extended summer and extended winter,
respectively. In these figures, the predictability limits are
around 29 and 30 days for the BSISO and MJO, re-
spectively, lower than the limits shown in Figs. 3a,b.
This result indicates that the use of more PCs in the
NLLE calculation would reduce the predictability of the
BSISO and MJO to some extent for combined OLR and
850-hPa winds. If we measure the predictability of the
BSISO-MIJO using original filtered data instead of their
dominant EOF modes, the predictability of the 200-hPa
velocity potential would be higher than that of com-
bined OLR and 850-hPa winds.

As mentioned above, the potential predictability
limits obtained by the NLLE approach are close to
5 weeks for the BSISO and MJO, comparable to (but
slightly less than) those determined by Ding et al. (2010)
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from year-round daily data. These results are encour-
aging, essentially showing that existing numerical and
statistical models have great potential to improve the
ISO forecasting. However, these potential predictability
limits are difficult to attain in real time because they are
based on input data with the use of temporal filtering.
Temporal filtering has restricted use in real-time pre-
dictions because of its requirement for information be-
yond the end of the time series (Wheeler and Hendon
2004). Moreover, the filtered value for the present day
contains information from both past and future days,
which tends to inflate the forecast skill as a result of the
propagation of observed information into the forecast
data (Seo et al. 2009). By generating a set of random
numbers with the same spectral characteristics as trop-
ical OLR data, Ding et al. (2010) reported a pre-
dictability of about 1 week for background noise arising
from bandpass filtering. Here, we perform a similar ex-
periment to test the predictability of filtered noise that
has the same spectral characteristics as the two PCs

associated with the first two EOFs of combined OLR
and 850-hPa winds during the boreal summer and boreal
winter, respectively. First, we take the space—time fast
Fourier transform (FFT) of the two PCs associated with
the BSISO and MJO, multiply them by their conjugate,
and then generate random complex numbers that give
the same power at each wavenumber and frequency
as the PCs. Then, we compute the inverse space—time
Fourier transform over the wavenumber-frequency
band of the BSISO and MJO to obtain the filtered noise
characterized by the same spectrum as the real BSISO
and MJO. Finally, we apply the NLLE approach to a
time series from the filtered noise and test its predic-
tability. Figures 10a,b shows the probability distribu-
tions of the predictability limits of filtered noise with the
same spectral characteristics as the BSISO and MJO,
respectively. The predictability limits of filtered noise
are 5-9 days in both cases, with a maximum probability
of 6-7 days, which is much less than 5-week predictability
of the BSISO and MJO obtained above. Accordingly, we
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conclude that the estimated predictability of the BSISO
and MJO is not derived from the bandpass filtering itself
but from the real signal of the physical processes involved
in the development and evolution of the ISO, although
the filtering tends to extend the predictability to some
extent.

Since the RMM indices, as introduced by Wheeler
and Hendon (2004), avoid a bandpass filtering to extract
the intraseasonal signals, it is interesting to investigate
the predictability limits of the BSISO and MJO using the
RMM indices. Figures 11a,b shows the mean error
growth of the vector Z, which consists of daily RMM1
and RMM?2, during the boreal summer and boreal win-
ter, respectively. The predictability limit of the BSISO
based on this daily RMM series is around 16 days, while
that of the MJO is approximately 18 days. These pre-
dictability limits are lower than the potential pre-
dictability limit of ~5 weeks obtained above, showing
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the influence of time filtering on predictability, and thus
the smoothness of the evolution of the system. For real-
time predictions, the MJO still shows slightly higher
predictability than does the BSISO, consistent with the
potential predictability obtained from combined OLR
and 850-hPa winds. Considering that noise (i.e., signals
unrelated to the MJO) is not totally removed from the
RMM index and that erratic daily variations remain in
the RMM time series (Wheeler and Hendon 2004; Seo
et al. 2009; Ding et al. 2010), the predictability limits in
real-time predictions of the BSISO and MJO possibly
exceed 3 weeks. Figures 12a,b shows the mean error
growth of the vector Z, which consists of pentad-mean
RMM1 and RMM2, during the boreal summer and bo-
real winter, respectively. The predictability limit of the
BSISO based on this pentad RMM series is around
20 days, while that of the MJO is approximately 25 days.
The results show that daily weather noise is removed by
calculating the pentad mean of daily RMM indices,
thereby extending the predictability of the BSISO and
MJO.

The above results give a general estimate of the pre-
dictability limit of the TISV; however, atmospheric
predictability is largely a function of space (Gonzalez-
Miranda 1997; Kumar et al. 2003; Reichler and Roads
2004), indicating that a spatial distribution of the TISV
predictability exists in the tropics. The NLLE algorithm
allows us to search for local dynamical analogs from
observational time series, thereby enabling an estimate
of TISV predictability over a small local region or for
a single grid point. Based on the NLLE algorithm, the
spatial distribution of the predictability limit of the TISV
can be determined using combined fields of the bandpass-
filtered OLR and 850-hPa winds (each field is normalized
by its global variance). Figures 13a,b shows the spatial
distributions of the potential predictability limit of the
combined filtered (30-80 days) OLR and 850-hPa winds
in the tropics (25°S-25°N) during summer and winter,
respectively. The potential predictability limit of the TISV
ranges from about 28 to 37 days during both summer and
winter. The spatial distribution of the limit appears to
depend on the season.

During the boreal summer, the potential predict-
ability limit of the TISV is relatively low over the Ara-
bian Sea, India, the Bay of Bengal, the South China Sea,
and the western North Pacific, which are the regions
where the BSISO is most active. The low predictability
of the TISV in these regions is unfavorable to the fore-
cast of the summer TISV. However, the potential pre-
dictability limit, which is nearly 1 month, offers a unique
opportunity to forecast the summer TISV over an in-
terval that is far beyond the deterministic limit of
weather prediction. In contrast, the potential predictability



AuGusT 2011

DING ET AL.

2431

20N+
10N I ARRR L e
EQ' ..11-\\\‘\\‘*‘“::: \\\\\\
10S4.-
20S+:
0
20N '@ :;g;;w; i:\\%
10N + 1 - ey s -
EQd= {2
1089~y
20S 4
0
(c) PC Time Series: Winter of 1987 ——PC3 —PC4
3 0.2 1 f\ /\/
28 N~ £ w
a
L W W
< -0.21 \/ \/

-0.4 T T r r r T T T r
. 1NOV 16NOV 1DEC 16DEC 1JAN 16JAN 1FEB 16FEB 2MAR 17MAR
1987 1988

FIG. 7. As in Fig. 1, but for (a) EOF3, (b) EOF4, and (c) PC3 and PC4 from 1 Nov 1987 to
31 Mar 1988.

limit of the summer TISV is relatively high over the
North Pacific, North Atlantic, southern Africa, and
South America. During the boreal winter, the limit is
relatively low over the tropical western Pacific, North
Pacific, and North Atlantic, while it is relatively high
over the northern Indian Ocean, tropical eastern Pacific,
and tropical southern Atlantic. Overall, the spatial dis-
tribution of the limit during winter is approximately the
opposite of that during summer.

Although the spatial distribution of the potential
predictability limit of the TISV is related to that of TISV
strength during summer and winter (Figs. 14a,b), the
two distributions are not entirely consistent. The sum-
mer TISV is relatively strong over the tropical Indian
Ocean, the South China Sea, and the northwestern Pa-
cific; in contrast, the winter TISV is relatively strong
over the tropical Indian Ocean and northern Australia.
The potential predictability limit of the TISV appears to
be lower in downstream regions during both seasons
(e.g., 10°-20°N region in the Eastern Hemisphere during

summer, and 120°E-150°W at the equator during win-
ter). The limit is larger over the onset and development
areas of the MJO (including East Africa and the Indian
Ocean), where the MJO signal is considerably strong
(Fig. 14b). However, this is not the case in summer (Fig.
14a) (probably due to the complex propagation pattern
of the BSISO and the weak signal in summer compared
with the winter case). The present results indicate that
many complex processes and interactions combine to
determine the predictability of the TISV, thereby making
it difficult to isolate cause-and-effect relationships. Ob-
servational data contain the components of both atmo-
spheric internal dynamics and external forcings, and it
is difficult to separate these components using current
methods. The factors that underlie locally high or low
predictability of the summer and winter TISV remain to
be identified in future studies using a more realistic
model of the TISV.

Figures 15a,b shows the mean error growth of the first
two PCs of the combined filtered OLR and 850-hPa
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winds for the different phases of the life cycle of the
BSISO and MJO, respectively. The structures of OLR
and 850-hPa winds anomalies for PC1+ and PC2+ ini-
tial phases of the BSISO and MJO are shown in Fig. 1
and Fig. 2, respectively. The PC1— and PC2— phases
show a structure similar to that of the PC1+ and PC2+,
respectively, but with the opposite sign. For both the
BSISO and MJO, extreme phases show a lower rate of
error growth than the null case. This result is consistent
with the findings of Seo et al. (2005), who reported that
extreme phases have a skill (measured by the anomaly
correlation of upper-level wind) greater than the null
case in the NCEP Global Forecast System (GFS) model
for both the BSISO and MJO. In general, the initial
error of the BSISO shows a rapid initial growth com-
pared with the MJO for cases of strong ISO convection.
In contrast, Seo et al. (2005) reported that for cases of
strong ISO convection, the forecast skill level of the ISO
in the NCEP GFS model is higher during summer than
in winter. The prediction skill of the ISO in the NCEP

GFS model is only ~7 days (measured by the anomaly
correlation), indicating that large deficiencies exist in
the NCEP GFS model. Model deficiencies would
strongly influence estimates of the prediction skill of the
BSISO and MJO. In addition, even if anomaly correla-
tion is a useful measure, it can yield erroneously high
scores when the phases of intraseasonal variability are
well predicted but the amplitude is poorly predicted.
The application of observational data in the present
study means that we exclude the influence of model
deficiencies, presumably ensuring a more reliable result.
We estimated the potential predictability of the BSISO
and MJO using indices of combined fields of OLR and
850-hPa winds, whereas Seo et al. (2005) estimated the
skill and potential predictability of the BSISO and MJO
using zonal winds at 850 and 200 hPa and OLR sepa-
rately, which may explain the discrepancy between ours
results and those of Seo et al. (2005).

Among the four phases of the MJO, the error growth
associated with the PC2— is slowest, indicating a smaller
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prediction error when MJO convection is initially located
over Africa and the Indian Ocean. During the period
when the convection anomaly forms over these regions,
and subsequently strengthens and moves eastward, it is
relatively easy to capture the evolution of the MJO with
a small prediction error. The enhanced convection that is
initially located over the eastern Indian Ocean and the
Maritime Continent (PC1+) also yields a low rate of
error growth. Among the four extreme phases of the
MJO, the error growth appears to be most rapid during
the period when the convection shows a gradual decay in
the western Pacific and when the MJO signal is dimin-
ishing (PC1—; Fig. 15b). The enhanced convection that is
initially located over the western Pacific (PC2+) pro-
duces an initial error growth that is slower than that of
PC1— but faster than that of PC1+.

Among the four extreme phases of the BSISO, the
PC2— phase shows a most rapid growth in initial error,
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whereas the PC2+ phase shows the slowest growth [Fig.
15a; i.e., the error growth is slow when convection
anomalies are initially located over the northern Indian
Ocean and the Maritime Continent (PC2+), whereas it
is rapid when convection anomalies are initially located
over the South China Sea and the western Pacific, and
subsequently decay near southern China (PC2—)]. The
enhanced convection that is initially located over the
eastern Indian Ocean (PC1+) produces an initial error
growth similar to or slightly slower than that of PC2—.
The error growth is generally rapid when the BSISO and
MJO enter the decaying phase (when ISO signals are
weak), whereas it is slow when convection anomalies of
the BSISO and MJO are located in upstream regions
(when ISO signals are strong).

Previous studies have investigated the dependence
of ISO predictability on various phases. For example,
Waliser et al. (2003) performed a dynamic potential
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predictability experiment using the NASA Goddard
Laboratory for the Atmospheres (GLA) general circu-
lation model (GCM), and Seo et al. (2005) performed an
NCEP GFS forecast experiment. The results of these
studies are model dependent, to the extent that different
models even yield the opposite conclusions. Some of the
present results obtained from observational data are
similar to those obtained using models, although other
results are dissimilar and some are even contradictory.
Further study is necessary to explain the differences
between the results obtained from observational data
and those obtained from various models.

S. Summary

This study investigated differences in the predictability
limits of the BSISO and MJO using the NLLE approach,
which provides an estimate of atmospheric predict-
ability based on observational data. The PC time series
of the two leading EOFs of the combined filtered OLR
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and 850-hPa winds during the extended summer (MJJAS)
and extended winter (NDJFM) are used as an index of
the BSISO and MJO activity, respectively. The poten-
tial predictability limit of the BSISO is about 32 days,
comparable to (but slightly lower than) that of the MJO
(about 34 days). During the early phase of error growth,
the initial error of the BSISO grows more rapidly than
does that of the MJO, possibly related to the relatively
complex spatial variability in BSISO structure. Similar
results were found for the filtered 200-hPa velocity po-
tential, revealing that the potential predictability limits
of the BSISO and MJO are similar (~32 days). However,
the limits estimated using bandpass-filtered data may
overestimate the predictability of the ISO because of the
use of time filtering. Filtered noise with the same spec-
tral characteristics as the BSISO and MJO shows a pre-
dictability of about 1 week. Our investigation of the
predictability of the real-time daily MJO index (Wheeler
and Hendon 2004) revealed that the upper limits of the
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forecast skill in real-time predictions of the BSISO and
MJO are approximately 16 and 18 days, respectively. The
use of pentad-mean RMM indices extends the pre-
dictability limit of the BSISO and MJO.

We used the NLLE algorithm to perform a quanti-
tative analysis of the spatial distribution of the po-
tential predictability limit of the combined fields of
the bandpass-filtered OLR and 850-hPa winds during
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FIG. 14. Percentage of 30-80-day variance to total variance for
the (a) extended boreal summer and (b) extended boreal winter
OLR field in the tropics (25°S-25°N).
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summer and winter. Throughout the tropics, the po-
tential predictability limit of the TISV ranges from
about 28 to 37 days during both summer and winter. The
spatial distribution of the limit appears to depend on
the season. During summer, the limit is relatively low
over regions where the TISV is most active, whereas it
is relatively high over the North Pacific, the North At-
lantic, southern Africa, and South America. The spatial
distribution of the limit during winter is approximately
the opposite of that during summer. For strong phases
of ISO convection, the initial error of the BSISO gen-
erally shows a more rapid growth than that of the MJO.
The error growth is rapid when the BSISO and MJO
enter the decaying phase (when ISO signals are weak),
whereas it is slow when convection anomalies of the
BSISO and MJO are located in upstream regions (when
ISO signals are strong).

The present work contains several limitations. First,
the total variance explained by the two leading EOFs
of combined OLR and 850-hPa winds in the present
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work is relatively small (<20%), which limits the rep-
resentativeness of the corresponding PC time series
used as an index of BSISO and MJO activity. The use
of more PCs to calculate the NLLE would be equiva-
lent to increasing the number of spatial degrees of
freedom. Clearly, for a relatively short observation
period, it is difficult to find good analogs for a large
number of spatial degrees of freedom; consequently,
the application of the NLLE approach is limited in this
situation. Further study is required to assess differ-
ences in the predictability of the BSISO and MJO,
using a more representative index of ISO activity.
Second, the ISO predictability obtained in the present
study provides only an estimate of the average pre-
dictability of the ISO. Little is known of the physical
processes that give rise to the predictability of the
BSISO and MJO, which limits our understanding of the
BSISO and MJO and hinders their simulation and
forecasting. To improve our understanding of the pre-
dictability of the TISV, a more realistic model of the
ISOisrequired, as well as a detailed analysis of tropical
observational data.
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APPENDIX

An Algorithm for the NLLE Estimation from
Observational Data

The experimental or observational data of a single
variable of an n-dimensional chaotic system (e.g.,
the time series of a variable x is given by {x(z,),
i=0,1,2,...... ,m — 1} where m represents the length
of the time series), an algorithm that allows the estima-
tion of the mean NLLE and the mean RGIE from the
experimental or observational time series is given by the
following steps.

Step 1: Taking x(%,) as the reference point at the time
t,, we first seek the local dynamical analog x(z,) of the
reference point from the dataset. Two distances (i.e.,
the initial distance between two points and the evolu-
tionary distance between their trajectories within a short
initial period) are used to measure the degree of simi-
larity between the points. All points x(t/)(|tj —1,| >90,
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ensuring that a good analog pair is not merely due to-
persistence) in the dataset form a set S. The initial dis-
tance d, between the points x(¢,) and x(t,) is given by

j

d, = |x(tg) = x(t)|. (A1)

We assume that the evolutions of two points are anal-
ogous over a very short time 7 if they are analogous at
the initial time. The choice of the short time interval 7
depends on the persistence of the variable x; if the per-
sistence is low, the time over which two initially close
points remain analogous is relatively short. The time
taken for autocorrelations of the variable x to drop to 0.9
can be regarded as a rough estimate of the short time
interval 7. A high value (0.9) of autocorrelation is chosen
to ensure a short time interval (the results were found to
be insensitive to the selected value). Within the short
interval 7 (1 = KA, where A is the sampling interval of
the time series), the evolutionary distance d, between
the two points x(t,) and x(tj) is given by

K
e ﬁ Z‘][x(ti) - X([j_ﬂ.)]z’ (A2)

where d, is the amount of the initial separation between
the two points x(¢,) and x(t/.), while d, is the evolutionary
distance between their trajectories over a short initial
period. The total distance d,, considering not only the
initial distance but also the evolutionary distance, is
found by adding d, and d,,:

d=d +d, (A3)

If d, is very small, it is highly likely that the points x(,)
and x(l].) are analogous at the initial time. Of course, this
approach is unlikely to exclude the possibility that only
the variable x remains close, whereas other variables
evolve very differently over time, especially for high-
dimensional dynamical systems; however, our experi-
mental results indicate that this possibility is low (Li and
Ding 2011). For two nonanalogous initial states, the
value of d, is generally large. The constraint of the total
distance d, allows us to exclude a large portion of all
points with large initial distances, thereby helping us to
find a truly analog of the reference point. For every point
x(tj) in the set S, the value of d, can be determined. The
nearest neighbor (local dynamical analog) x(z,) of the
reference point x(%,) can be chosen from the set S only if
the d, is the minimum. Then, the initial distance between
x(t,) and x(¢,) is denoted as follows:
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L(zy) = [x(ty) — x(t)]-

Step 2: At the time ¢, =¢,+i X A (i=1,2,3, ...... ),
x(t,) will have evolved to x(z;) along the reference tra-
jectory, and x(z,) will have evolved into x(t,,,). The
initial difference L(t,) will have become

(A4)

L(t;) = [x(t;) — x(t;.,)| - (AS)
The growth rate of the initial error during the time 7, — 1,
is

1 L(t,)

gl(ti) :H lnL(to) .

(A6)

With i gradually increasing, we can obtain the variation
of &,(t,) as a function of the evolution time ¢,.

Step 3: Taking x(¢,) as the reference state and re-
peating the steps 1 and 2 above, we obtain the variation
of &,(t,) as a function of the evolution time ¢,.

Step 4: The above procedure is repeated until the
reference trajectory has traversed the entire data file. By
taking the average of the error growth rates at all ref-
erence points, we obtain the mean NLLE:

N
E(ti)=ll;§k(ti), (i=1,23,...... ), (A7)

where N (N <m) is the total number of reference points
on the reference trajectory.

Step 5: From Egs. (A6) and (A7), we obtain the ap-
proximation of the mean relative growth of initial error
(RGIE):

(1) = explEL)(E, — )], (=1,2,3,...... ). (AS8)

By investigating the evolution of ®(t,) with increasing 7,
we can estimate the mean predictability limit of the
variable x.
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