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ABSTRACT

Tropical intraseasonal variability (TISV) shows two dominant modes: the boreal winter Madden–Julian

oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO). The two modes differ in intensity,

frequency, and movement, thereby presumably indicating different predictabilities. This paper investigates

differences in the predictability limits of the BSISO and the boreal winter MJO based on observational data.

The results show that the potential predictability limit of the BSISO obtained from bandpass-filtered (30–80

days) outgoing longwave radiation (OLR), 850-hPa winds, and 200-hPa velocity potential is close to 5 weeks,

comparable to that of the boreal winter MJO. Despite the similarity between the potential predictability limits

of the BSISO and MJO, the spatial distribution of the potential predictability limit of the TISV during summer

is very different from that during winter. During summer, the limit is relatively low over regions where the TISV

is most active, whereas it is relatively high over the North Pacific, North Atlantic, southern Africa, and South

America. The spatial distribution of the limit during winter is approximately the opposite of that during summer.

For strong phases of ISO convection, the initial error of the BSISO shows a more rapid growth than that of the

MJO. The error growth is rapid when the BSISO and MJO enter the decaying phase (when ISO signals are

weak), whereas it is slow when convection anomalies of the BSISO and MJO are located in upstream regions

(when ISO signals are strong).

1. Introduction

The intraseasonal oscillation (ISO) is a dominant

mode of low-frequency variability in the tropical tro-

posphere (e.g., Madden and Julian 1994). The mode

undergoes a distinct seasonal variation, with most active

oscillation during the northern winter and spring, and

weaker activity during the northern summer (Slingo

et al. 1999). The boreal winter ISO, often referred to as

the Madden–Julian oscillation (MJO; Madden and

Julian 1994), is characterized by eastward-propagating

tropical convective anomalies and associated circulation

anomalies with time scales of about 30–70 days. In

contrast, the boreal summer ISO (BSISO) has a com-

plex structure that shows both eastward and northward

propagation (Yasunari 1979; Lawrence and Webster

2002).

Employing the nonlinear local Lyapunov exponent

(NLLE) method, Ding et al. (2010) showed that the

potential predictability limit of the ISO obtained from

bandpass-filtered (30–80 days) outgoing longwave radi-

ation (OLR) and wind fields can exceed 5 weeks, which

is well above the 1-week predictability of background

noise due to bandpass filtering. In contrast, an investi-

gation of the predictability of the real-time MJO index,

as introduced by Wheeler and Hendon (2004), reveals

a predictability limit of about 3 weeks. However, given

that Ding et al. (2010) used year-round daily data,

which tends to be dominated by the stronger boreal

winter phase (MJO) of the tropical intraseasonal var-

iability (TISV), their study mainly considers boreal

winter MJO cases. The predictability of the northern
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summer ISO obtained from observational data re-

mains unknown.

In the present study, the NLLE approach is employed

to separately investigate the predictability limits of

the boreal summer ISO and the boreal winter MJO,

based on observed daily OLR, 850-hPa wind fields, and

200-hPa velocity potential, in order to identify the dif-

ferences in the predictability of the boreal summer ISO

and the boreal winter MJO (for brevity, we hereafter

refer to the boreal summer ISO as the BSISO and the

boreal winter MJO as the MJO). In addition, the po-

tential predictability limit of the TISV may be different

in different tropical regions; therefore, it is interesting to

compare the spatial distributions of the potential pre-

dictability limit of the TISV during summer and winter.

To examine if the predictability of the BSISO and MJO

is phase dependent, the predictabilities of the BSISO

and MJO for different phases of strong ISO events are

also compared.

2. Application of the NLLE approach

a. NLLE of an n-dimensional dynamical system

Consider a general n-dimensional nonlinear dynami-

cal system whose evolution is governed by

dx

dt
5 F(x), (1)

where x 5 [x1(t), x2(t), . . . . . . , xn(t)]T is the state vector

at the time t, the superscript T is the transpose, and F

represents the dynamics. The evolution of a small error

d 5 [d
1
(t), d

2
(t), . . . . . . , d

n
(t)]T, superimposed on a state

x, is governed by the nonlinear equations:

d

dt
d 5 J(x)d 1 G(x, d), (2)

where J(x)d are the tangent linear terms, and G(x, d) are

the high-order nonlinear terms of the error d. Because of

some difficulties in solving the nonlinear problem, most

previous studies (e.g., Lorenz 1965; Eckmann and

Ruelle 1985; Yoden and Nomura 1993; Kazantsev 1999;

Ziehmann et al. 2000) assumed that the initial pertur-

bations were sufficiently small that their evolution could

be approximately governed by the tangent linear model

(TLM) of the nonlinear model:

d

dt
d 5 J(x)d: (3)

However, the evolution of the linear error is character-

ized by continuous exponential growth, which is not

applicable to situations in which the initial errors are not

very small (Lacarra and Talagrand 1988; Mu 2000; Ding

and Li 2007). Therefore, the nonlinear behaviors of er-

ror growth should be considered in determining the limit

of predictability. Without a linear approximation, the

solutions of Eq. (2) can be obtained by numerically in-

tegrating it along the reference solution x from t 5 t0 to

t0 1 t:

d1 5 h(x0, d0, t)d0, (4)

where d1 5 d(t0 1 t), x0 5 x(t0), d0 5 d(t0), and h(x0, d0, t)

is the nonlinear propagator. The NLLE is then defined

as

l(x0, d0, t) 5
1

t
ln
kd1k
kd0k

, (5)

where l(x
0
, d

0
, t) depends in general on the initial state

x0 in phase space, the initial error d0, and time t. The

NLLE differs from existing local or finite-time Lyapu-

nov exponents defined based on linear error dynamics

(Yoden and Nomura 1993; Kazantsev 1999; Ziehmann

et al. 2000), which depend solely on the initial state x
0

and time t, not on the initial error d
0
. The ensemble

mean NLLE over the global attractor of the dynamical

system is given by

l(d0, t) 5

ð
V

l(x0, d0, t) dx

5 hl(x0, d0, t)iN , (N/‘), (6)

where V represents the domain of the global attractor of

the system and h i
N

denotes the ensemble average of

samples of sufficiently large size N (N/‘). The mean

relative growth of initial error (RGIE) can be obtained

by

F(d0, t) 5 exp[l(d0, t)t]. (7)

Using the theorem from Ding and Li (2007), we obtain

F(d0, t) ���!p c(N/‘), (8)

where ���!p denotes the convergence in probability and

c is a constant that depends on the converged probability

distribution P of error growth. The constant c can be

considered as the theoretical saturation level of F(d0, t).

Once the error growth reaches the saturation level, almost

all information on initial states is lost and the predic-

tion becomes meaningless. Using the theoretical satu-

ration level, the limit of dynamical predictability can be
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quantitatively determined (Li et al. 2006; Ding and Li

2007; Li and Wang 2008).

b. Estimating the NLLE from an observational
time series

For systems whose equations of motion are explicitly

known, such as the Lorenz system, we can directly cal-

culate the mean NLLE via numerical integration of the

system and its error evolution equations (Ding and Li

2007). However, some parameters and external forcing

terms in the dynamic equations of atmospheric motion

are explicitly unknown, and there exist uncertainties in

determining these parameters and external forcing

terms. It is possible to estimate the NLLE by making use

of the large amounts of observational data available for

the atmosphere. In a previous study, we developed an

algorithm that yields estimates of the NLLE and its

derivatives based on atmospheric observational data

(Ding et al. 2008). Over the past few years, the algorithm

has been further improved (Li and Ding 2011). The

general idea of the algorithm is to find local analogs of

the evolution pattern from observational time series.

The local analogs are searched for based on the initial

information and evolution information at two different

time points in the time series. If the initial distance at two

different time points is small and if their evolutions are

analogous over a very short interval, it is highly likely that

the two points were analogous at the initial time. This

analog is referred to as a ‘‘local dynamical analog.’’ A

brief description of the algorithm is given in the appendix.

As noted by Lorenz (1969), a sufficiently long time

series is required when using historical analogs to study

atmospheric predictability. It is almost impossible to

find good natural analogs within current libraries of

historical atmospheric data over large regions such as

the Northern Hemisphere. However, it should be noted

that the local dynamical analog is searched for from the

observational time series for a small local region, for

which the small number of spatial degrees of freedom

makes it possible to find good local analogs within cur-

rent libraries of historical atmospheric data, which al-

lows an ensemble average (Van den Dool 1994). In the

present study, the number of the spatial degrees of

freedom that characterizes the BSISO and MJO is re-

duced to ;2 by extracting their dominant modes.

Therefore, current records of observational data (1979–

2008) enable us to find good analogs by using the prin-

cipal components (PCs) of the dominant EOF modes

over the tropics, despite the relatively short length of the

records (Van den Dool 1994).

One example of the NLLE algorithm from the

Lorenz96 40-variable model (a low-order proxy for an

atmospheric model; Lorenz 1996) reveals that the

algorithm is entirely applicable in estimating the mean

error growth from an experimental time series (Li and

Ding 2011). The algorithm can also be applied in studies

of atmospheric predictability. Based on atmospheric

observational data, the NLLE approach has been used

to investigate decadal changes in weather predictability

(Ding et al. 2008), the temporal–spatial distribution of

the predictability of monthly and seasonal means of cli-

mate variables (Li and Ding 2008), and the predictability

limit of the MJO (Ding et al. 2010). In the present study,

we explore the potential predictability limits of the

BSISO and MJO based on the NLLE approach.

3. Data and methodology

Daily OLR data from the National Oceanic and At-

mospheric Administration (NOAA) are used to repre-

sent large-scale tropical convective activity over tropical

ocean and land. Continuous OLR records are available

from 1 January 1979 to the present; consequently, we use

the continuous 1979–2008 time series in the global

tropical strip (308S–308N). Primary atmospheric circu-

lation data are extracted from the National Centers for

Environmental Prediction–National Center for Atmo-

spheric Research (NCEP–NCAR) reanalysis products

(Kalnay et al. 1996), which contain a similar record of

850-hPa winds and 200-hPa velocity potential. Both the

OLR and 850-hPa winds are combined and analyzed on

a 58 latitude–longitude grid. The 200-hPa velocity po-

tential is analyzed alone on a 58 latitude–longitude grid

covering the domain from 308S to 308N.

To obtain the intraseasonal signal, the seasonal cycle

of daily OLR and 850-hPa winds is first removed by

subtracting the time mean and the first three harmonics

of the annual cycle, leaving the anomaly fields, which are

then bandpass filtered to retain periods in the range

of 30–80 days. To identify the dominant ISO signal

from the extended boreal summer [May–September

(MJJAS)] over the tropics (208S–308N), an empirical

orthogonal function (EOF) analysis is performed of

the combined fields of the bandpass-filtered OLR and

850-hPa winds. Similarly, the dominant MJO signal from

the extended boreal winter [November–March (NDJFM)]

over the tropics (258S–258N) is extracted by an EOF anal-

ysis of the combined fields of the bandpass-filtered OLR

and 850-hPa winds. In computing the EOFs of combined

fields, each field was normalized by its global variance

(area-averaged variance over the tropics) before input,

following Wheeler and Hendon (2004) and Seo et al.

(2009). The spatial patterns of the dominant EOF modes

provide a good reflection of large-scale variations in

tropical convection and associated surface wind fields;

the corresponding PCs of the dominant EOF modes

AUGUST 2011 D I N G E T A L . 2423



show how the spatial patterns of these modes oscillate

over time.

To investigate the predictability of the large-scale

divergent circulation at the 200-hPa level associated

with the BSISO and MJO, we also perform an EOF

analysis of the 200-hPa velocity potential during the

extended boreal winter and extended boreal summer,

respectively. Before the EOF analysis, annual cycles of

the 200-hPa velocity potential field were removed and

intraseasonal periods were captured using a 30–80-day

Lanczos filter. EOF analysis isolates the spatial structure

of the most dominant modes as well as their propagation

in time.

The predictability limits of the BSISO and MJO are

investigated by applying the NLLE approach to the PC

time series of the dominant EOF modes. Similar to Ding

et al. (2010), the vector Z in the two-dimensional phase

space can be defined by the first two PCs:

Z(t) 5 fPC1(t), PC2(t)g. (9)

The error of the vector Z is measured as the absolute

error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(DPC1)2

1 (DPC2)2
q

, where DPC1 represents the

error in the PC1 axis and DPC2 represents the error in

the PC2 axis. In the two-dimensional phase space, the

mean error growth of the vector Z with time can be

obtained using the NLLE approach. In the algorithm

given in the appendix, the time series of a single variable

x is replaced by that of the vector Z; the error of the

variable x is also replaced by the absolute error of the

vector Z. Similarly, the vector Z, consisting of a greater

number of PCs ($3), may be used to estimate the NLLE

using the algorithm given in the appendix. Using the PCs

that respectively represent the BSISO and MJO, the

seasonal differences in the predictability limits of the

BSISO and MJO may be investigated.

Wheeler and Hendon (2004) recently developed a new

MJO index based on the first two EOFs of the combined

fields of near-equatorially averaged (158S–158N) 850- and

200-hPa zonal winds, and OLR data. The projection of

daily observation data onto such multiple-variable EOFs

yields PC time series that are able to strongly discriminate

the 30–80-day signal. Hence, the necessity for time fil-

tering is reduced and the resulting PC time series could be

calculated in real time. The pair of PC time series that

forms the index is referred to as the real-time multivariate

MJO series 1 (RMM1) and 2 (RMM2). Although RMM1

and RMM2 describe the evolution of the MJO along

the equator, which is independent of season, the off-

equatorial structure captured by these indices still exhibits

strong seasonality. Therefore, we can further explore the

seasonal differences in the predictability of the BSISO

and MJO based on RMM indices, which consist of the

vector Z in Eq. (9). The predictability of the BSISO and

MJO, as obtained from unfiltered data, is different from

the potential predictability obtained from bandpass-

filtered data, as it provides a measure of real-time pre-

diction skill.

To investigate the dependence of the predictability of

the BSISO and MJO on different phases, strong ISO

events are identified by selecting the dates when either

of the two leading PCs exceeding 1.5 standard deviations

during the 30-yr period, following Hendon et al. (2000)

and Seo et al. (2005). According to the sign of the PCs,

the four phases of the ISO are then designated as PC11,

PC21, PC12, and PC22 with each succeeding phase

leading the preceding phase by about a quarter of a cy-

cle. Null events are defined as the cases where both

leading PCs are simultaneously less than 0.5 standard

deviations. The predictability is determined in terms of

the mean error growth derived using the NLLE ap-

proach based on the dates initialized for these five ex-

treme phases.

4. Results

Figures 1 and 2 show the spatial structures of the two

leading EOFs of the combined filtered OLR and

850-hPa winds during the extended winter (NDJFM) and

extended summer (MJJAS), respectively. According to

the criteria proposed by North et al. (1982), the first two

EOFs are well separated from the remaining EOFs and

contain the meaningful dynamical signal for both the

boreal winter and boreal summer. The first two EOFs

during both winter and summer generally appear as

a pair that together describe the large-scale propagating

convective anomalies and associated wind anomalies.

Compared with the extended winter, the first two EOFs

during the extended summer show markedly different

characteristics in terms of off-equatorial structure and

propagation, indicating the seasonality of the ISO.

The first two EOFs during the extended winter depict

the familiar structure and evolution of the MJO (Figs.

1a,b). In EOF1, enhanced convection is evident over the

eastern Indian Ocean and the Maritime Continent,

while reduced convection is seen in the central Pacific.

Associated westerly wind anomalies exist over the In-

dian Ocean, and easterlies exist over the Pacific. In

EOF2, enhanced convection moves eastward into the

western Pacific. As it passes by the Australian landmass,

it shifts southward to be most concentrated at about

108S. At the same time, reduced convection in the Indian

Ocean builds as enhanced convection moves out of the

region. The eastward movement of 850-hPa wind anom-

alies is quicker than convection; consequently, enhanced

convection in EOF2 is entirely within the westerlies
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(over the western Pacific). EOF2 is spatially in quad-

rature with EOF1. Taken as a pair, these structures are

in agreement with the results of previous studies (e.g.,

Weickmann et al. 1985; Ferranti et al. 1990; Matthews

and Kiladis 1999; Innes and Slingo 2003; Wheeler

and Hendon 2004) and are effective in capturing the

southern summer MJO. The PC time series shows the

time-varying amplitude of the EOF spatial structures.

A subset of the PC time series (winter of 1987/88) is

shown in Fig. 1c. PC1 leads PC2 by about a quarter of

a cycle, consistent with the eastward propagation of

the MJO.

For the northern summer season, the first two EOFs

show eastward and northward propagation of enhanced

convection in the Indian Ocean sector (Figs. 2a,b). In

EOF1, enhanced convection is present over the eastern

equatorial Indian Ocean; in EOF2, it moves northward

and eastward into India, the Bay of Bengal, and the

Maritime Continent. The associated wind anomalies

also show eastward and northward movement, with

northeasterly wind anomalies ahead of the enhanced

convection (EOF1, EOF2), and southwesterlies behind

the convection (EOF2). Because EOF analysis is per-

formed by using information at all longitudes, it is ef-

fective in picking up the global signature of the BSISO.

In addition to the typical intraseasonal variability of the

Indian monsoon, the analysis reveals the variability over

the eastern Pacific and Caribbean. All of these aspects

of the BSISO that are apparent in the first two EOFs

are consistent with those reported in previous studies

(Kemball-Cook and Wang 2001; Lawrence and Webster

2002; Wheeler and Hendon 2004), which explored the

major characteristics of the BSISO via composite anal-

yses of different phases of the ISO. Figure 2c shows the

PC time series of combined fields for the summer of 1987.

PC2 leads PC1 by about a quarter of a cycle, describing

the eastward- and northward-propagating feature of the

BSISO.

FIG. 1. EOF analysis of the combined fields of 30–80-day-filtered OLR (W m22) and 850-hPa

winds (m s21) during the extended winter (NDJFM) over the tropics (258S–258N). (a) EOF1,

(b) EOF2, and (c) PC1 and PC2 from 1 Nov 1987 to 31 Mar 1988.
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The above analysis shows that the first two EOFs are

able to capture the main characteristics of the BSISO

and MJO; consequently, their corresponding PCs may

be used to investigate differences in the predictability of

the BSISO and MJO. The mean error growth of the

vector Z, which consists of the first two PCs, can be

obtained using the NLLE approach. Figures 3a,b show

the mean error growth of the vector Z for the BSISO

and MJO, respectively. In both cases, the mean error of

the vector Z shows a rapid initial increase before slowing

down and then finally reaching saturation. As noted by

Ding et al. (2010), it is possible that mechanisms with

different time scales determine the mean error growth of

the ISO during different phases of error growth. In the

early phase, involving rapid growth of the initial error,

the initial conditions may play an important role in de-

termining the mean error growth of the ISO. After

about 2 weeks, in contrast, the error growth appears

to be more strongly influenced by the slowly varying

boundary conditions, such as external SST forcing. Recent

observational and modeling studies have shown that

ocean–atmosphere coupling is important for mainte-

nance of the ISO, which could lead to an extension of the

theoretical predictability of the ISO (Fu et al. 2007; Seo

et al. 2007, 2009; Kim et al. 2008). From this viewpoint,

ocean–atmosphere coupling could extend the predi-

ctability of the ISO to a longer lead time. The mean

error growth ultimately reaches the saturation level, in-

dicating that almost all the information on initial states is

lost and that the prediction becomes meaningless. There-

fore, the potential predictability limit is defined as the

time at which the error reaches 95% of its saturation

level. From Figs. 3a,b, the potential predictability limits

of the BSISO and MJO are about 32 and 34 days, re-

spectively. This result indicates that the potential pre-

dictability limit of the MJO is comparable to (but slightly

higher than) that of the BSISO.

The potential predictability limits of the BSISO and

MJO, as estimated using observational data, are only

attained when the models are perfect. Existing models

FIG. 2. As in Fig. 1, but for EOF analysis during the extended summer (MJJAS) over the tropics

(208S–308N). In (c), PC1 and PC2 are shown from 1 May 1987 to 30 Sep 1987.
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are commonly poor in simulating the ocean–atmosphere

interactions, thereby making it difficult to attain the

extended predictability from ocean–atmosphere cou-

pling. The skill of these models is derived mainly from

the information contained in the initial states of the at-

mosphere and ocean. Therefore, most existing models

produce low estimates of the prediction skill of the ISO.

In Figs. 3a,b, the time taken for the mean error of the

vector Z to enter the slowly growing phase is around

19 days for the MJO, and around 15 days for the BSISO.

These times may represent the predictability of the MJO

and the BSISO based mainly on the ISO–MJO signals

at the respective initial states. It is evident that during

the early phase of error growth, the initial error of the

BSISO increases more quickly than that of the MJO.

The initially rapid growth of the BSISO error is probably

due to its relatively complex spatial structure and

propagation pattern (with stronger nonlinearity and

instability, which causes initial errors to grow more rap-

idly). If models with poor representation of the ocean–

atmosphere coupling are used to predict the ISO, they

generally tend to produce more skillful predictions during

winter than during summer.

Figures 4 and 5 show the spatial patterns of the two

leading EOFs of 200-hPa velocity potential during the

extended boreal winter (NDJFM) and extended boreal

summer (MJJAS), respectively. For both seasons, the

two leading EOFs account for a large portion of the

total variance (around 80%), and are well separated

from the remaining EOFs. During the extended boreal

winter, enhanced divergence (negative velocity poten-

tial anomalies) in EOF1 is located over the eastern In-

dian Ocean and the Maritime Continent; it moves to the

western Pacific in EOF2, with the center occurring south

of the equator. Together with the PC time series, these

first two EOFs describe a regular eastward propagation

of the large-scale divergent circulation associated with

intraseasonal convective activity. The first two EOFs

during the extended boreal summer show similar spa-

tial patterns to those during the extended boreal winter,

with the differences being mainly in the location of

the divergence and convergence centers. The eastward

propagation of large-scale divergent circulation at 200 hPa

is prominent during summer, but the northward propa-

gation over the Asian summer monsoon region is not

clear. As in Eq. (1), the vector Z, consisting of PC1

and PC2 during summer (winter), represents the BSISO

(MJO) activity. Figures 6a,b show the mean error growth

of the vector Z for the BSISO and MJO, respectively.

The predictability limit of the BSISO is the same as that

of the MJO, being around 32 days. These limits, de-

termined from 200-hPa velocity potential, are compa-

rable to those determined from combined OLR and

850-hPa winds.

However, previous studies suggest that the predict-

ability of the 200-hPa velocity potential associated with

the MJO in numerical models is much longer than that

of MJO-related rainfall (Waliser et al. 2003; Reichler

and Roads 2005). The relatively high predictability of

combined OLR and 850-hPa winds in the present study

probably arises because the first two EOFs of combined

OLR and 850-hPa winds only capture the large-scale

circulation features associated with the BSISO and MJO.

In fact, the two PCs of combined OLR and 850-hPa winds

are closely related to those of the 200-hPa velocity po-

tential. PC1 and PC2 of combined OLR and 850-hPa

winds during winter have correlation coefficients of 0.90

and 0.92 with those of the 200-hPa velocity potential for

FIG. 3. (a) Mean error growth of the vector Z in the two-

dimensional phase space defined by the first two PCs of EOF anal-

ysis of the combined filtered OLR and 850-hPa winds during the

extended summer (MJJAS). (b) As in (a), but for mean error growth

of the vector Z during the extended winter (NDJFM). The dashed

line represents the 95% level of the saturation value, as obtained by

taking the average of the mean error growth after 35 days. The F

denotes the mean error of the vector Z.
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1979–2008, respectively. This finding indicates that the

first two EOFs of combined OLR and 850-hPa winds are

closely coupled with those of the 200-hPa velocity po-

tential, thereby giving a similar predictability of the

BSISO and MJO. The total variance explained by the

two leading EOFs is relatively small (less than 20%) for

combined OLR and 850-hPa winds, suggesting that

some BSISO–MJO-related characteristics are not en-

tirely reflected by these two EOFs. EOF3 and EOF4 in

the winter MJO show some complicated behavior for

combined OLR and 850-hPa winds, with convective

activity occurring more to the east of 1008E (Fig. 7). Seo

and Kim (2003) reported that EOF1 and EOF2 of the

springtime OLR field along the equator clearly show the

eastward-propagating OLR variability, while EOF3

shows a stationary convection behavior. Similar to the

winter MJO, the spatial patterns of EOF3 and EOF4 in

the BSISO are also more complicated than those of

EOF1 and EOF2 for combined OLR and 850-hPa winds

(Fig. 8). If a greater number of PCs ($3) are used to

calculate the mean error growth of the BSISO and MJO,

their predictability would be lower for combined OLR

and 850-hPa winds. Figures 9a,b shows the mean error

growth of the vector Z, which consists of the first three

PCs, for the extended summer and extended winter,

respectively. In these figures, the predictability limits are

around 29 and 30 days for the BSISO and MJO, re-

spectively, lower than the limits shown in Figs. 3a,b.

This result indicates that the use of more PCs in the

NLLE calculation would reduce the predictability of the

BSISO and MJO to some extent for combined OLR and

850-hPa winds. If we measure the predictability of the

BSISO–MJO using original filtered data instead of their

dominant EOF modes, the predictability of the 200-hPa

velocity potential would be higher than that of com-

bined OLR and 850-hPa winds.

As mentioned above, the potential predictability

limits obtained by the NLLE approach are close to

5 weeks for the BSISO and MJO, comparable to (but

slightly less than) those determined by Ding et al. (2010)

FIG. 4. As in Fig. 1, but for EOF analysis of 30–80-day-filtered 200-hPa velocity potential

(3105 m2 s21) during the extended winter (NDJFM) over the tropics (308S–308N).
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from year-round daily data. These results are encour-

aging, essentially showing that existing numerical and

statistical models have great potential to improve the

ISO forecasting. However, these potential predictability

limits are difficult to attain in real time because they are

based on input data with the use of temporal filtering.

Temporal filtering has restricted use in real-time pre-

dictions because of its requirement for information be-

yond the end of the time series (Wheeler and Hendon

2004). Moreover, the filtered value for the present day

contains information from both past and future days,

which tends to inflate the forecast skill as a result of the

propagation of observed information into the forecast

data (Seo et al. 2009). By generating a set of random

numbers with the same spectral characteristics as trop-

ical OLR data, Ding et al. (2010) reported a pre-

dictability of about 1 week for background noise arising

from bandpass filtering. Here, we perform a similar ex-

periment to test the predictability of filtered noise that

has the same spectral characteristics as the two PCs

associated with the first two EOFs of combined OLR

and 850-hPa winds during the boreal summer and boreal

winter, respectively. First, we take the space–time fast

Fourier transform (FFT) of the two PCs associated with

the BSISO and MJO, multiply them by their conjugate,

and then generate random complex numbers that give

the same power at each wavenumber and frequency

as the PCs. Then, we compute the inverse space–time

Fourier transform over the wavenumber-frequency

band of the BSISO and MJO to obtain the filtered noise

characterized by the same spectrum as the real BSISO

and MJO. Finally, we apply the NLLE approach to a

time series from the filtered noise and test its predic-

tability. Figures 10a,b shows the probability distribu-

tions of the predictability limits of filtered noise with the

same spectral characteristics as the BSISO and MJO,

respectively. The predictability limits of filtered noise

are 5–9 days in both cases, with a maximum probability

of 6–7 days, which is much less than 5-week predictability

of the BSISO and MJO obtained above. Accordingly, we

FIG. 5. As in Fig. 2, but for EOF analysis of 30–80-day-filtered 200-hPa velocity potential

(3105 m2 s21) during the extended summer (MJJAS) over the tropics (308S–308N).
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conclude that the estimated predictability of the BSISO

and MJO is not derived from the bandpass filtering itself

but from the real signal of the physical processes involved

in the development and evolution of the ISO, although

the filtering tends to extend the predictability to some

extent.

Since the RMM indices, as introduced by Wheeler

and Hendon (2004), avoid a bandpass filtering to extract

the intraseasonal signals, it is interesting to investigate

the predictability limits of the BSISO and MJO using the

RMM indices. Figures 11a,b shows the mean error

growth of the vector Z, which consists of daily RMM1

and RMM2, during the boreal summer and boreal win-

ter, respectively. The predictability limit of the BSISO

based on this daily RMM series is around 16 days, while

that of the MJO is approximately 18 days. These pre-

dictability limits are lower than the potential pre-

dictability limit of ;5 weeks obtained above, showing

the influence of time filtering on predictability, and thus

the smoothness of the evolution of the system. For real-

time predictions, the MJO still shows slightly higher

predictability than does the BSISO, consistent with the

potential predictability obtained from combined OLR

and 850-hPa winds. Considering that noise (i.e., signals

unrelated to the MJO) is not totally removed from the

RMM index and that erratic daily variations remain in

the RMM time series (Wheeler and Hendon 2004; Seo

et al. 2009; Ding et al. 2010), the predictability limits in

real-time predictions of the BSISO and MJO possibly

exceed 3 weeks. Figures 12a,b shows the mean error

growth of the vector Z, which consists of pentad-mean

RMM1 and RMM2, during the boreal summer and bo-

real winter, respectively. The predictability limit of the

BSISO based on this pentad RMM series is around

20 days, while that of the MJO is approximately 25 days.

The results show that daily weather noise is removed by

calculating the pentad mean of daily RMM indices,

thereby extending the predictability of the BSISO and

MJO.

The above results give a general estimate of the pre-

dictability limit of the TISV; however, atmospheric

predictability is largely a function of space (González-

Miranda 1997; Kumar et al. 2003; Reichler and Roads

2004), indicating that a spatial distribution of the TISV

predictability exists in the tropics. The NLLE algorithm

allows us to search for local dynamical analogs from

observational time series, thereby enabling an estimate

of TISV predictability over a small local region or for

a single grid point. Based on the NLLE algorithm, the

spatial distribution of the predictability limit of the TISV

can be determined using combined fields of the bandpass-

filtered OLR and 850-hPa winds (each field is normalized

by its global variance). Figures 13a,b shows the spatial

distributions of the potential predictability limit of the

combined filtered (30–80 days) OLR and 850-hPa winds

in the tropics (258S–258N) during summer and winter,

respectively. The potential predictability limit of the TISV

ranges from about 28 to 37 days during both summer and

winter. The spatial distribution of the limit appears to

depend on the season.

During the boreal summer, the potential predict-

ability limit of the TISV is relatively low over the Ara-

bian Sea, India, the Bay of Bengal, the South China Sea,

and the western North Pacific, which are the regions

where the BSISO is most active. The low predictability

of the TISV in these regions is unfavorable to the fore-

cast of the summer TISV. However, the potential pre-

dictability limit, which is nearly 1 month, offers a unique

opportunity to forecast the summer TISV over an in-

terval that is far beyond the deterministic limit of

weather prediction. In contrast, the potential predictability

FIG. 6. As in Fig. 3, but for mean error growth of the vector Z in

the two-dimensional phase space defined by the first two PCs of

EOF analysis of the 200-hPa velocity potential during summer and

winter.
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limit of the summer TISV is relatively high over the

North Pacific, North Atlantic, southern Africa, and

South America. During the boreal winter, the limit is

relatively low over the tropical western Pacific, North

Pacific, and North Atlantic, while it is relatively high

over the northern Indian Ocean, tropical eastern Pacific,

and tropical southern Atlantic. Overall, the spatial dis-

tribution of the limit during winter is approximately the

opposite of that during summer.

Although the spatial distribution of the potential

predictability limit of the TISV is related to that of TISV

strength during summer and winter (Figs. 14a,b), the

two distributions are not entirely consistent. The sum-

mer TISV is relatively strong over the tropical Indian

Ocean, the South China Sea, and the northwestern Pa-

cific; in contrast, the winter TISV is relatively strong

over the tropical Indian Ocean and northern Australia.

The potential predictability limit of the TISV appears to

be lower in downstream regions during both seasons

(e.g., 108–208N region in the Eastern Hemisphere during

summer, and 1208E–1508W at the equator during win-

ter). The limit is larger over the onset and development

areas of the MJO (including East Africa and the Indian

Ocean), where the MJO signal is considerably strong

(Fig. 14b). However, this is not the case in summer (Fig.

14a) (probably due to the complex propagation pattern

of the BSISO and the weak signal in summer compared

with the winter case). The present results indicate that

many complex processes and interactions combine to

determine the predictability of the TISV, thereby making

it difficult to isolate cause-and-effect relationships. Ob-

servational data contain the components of both atmo-

spheric internal dynamics and external forcings, and it

is difficult to separate these components using current

methods. The factors that underlie locally high or low

predictability of the summer and winter TISV remain to

be identified in future studies using a more realistic

model of the TISV.

Figures 15a,b shows the mean error growth of the first

two PCs of the combined filtered OLR and 850-hPa

FIG. 7. As in Fig. 1, but for (a) EOF3, (b) EOF4, and (c) PC3 and PC4 from 1 Nov 1987 to

31 Mar 1988.
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winds for the different phases of the life cycle of the

BSISO and MJO, respectively. The structures of OLR

and 850-hPa winds anomalies for PC11 and PC21 ini-

tial phases of the BSISO and MJO are shown in Fig. 1

and Fig. 2, respectively. The PC12 and PC22 phases

show a structure similar to that of the PC11 and PC21,

respectively, but with the opposite sign. For both the

BSISO and MJO, extreme phases show a lower rate of

error growth than the null case. This result is consistent

with the findings of Seo et al. (2005), who reported that

extreme phases have a skill (measured by the anomaly

correlation of upper-level wind) greater than the null

case in the NCEP Global Forecast System (GFS) model

for both the BSISO and MJO. In general, the initial

error of the BSISO shows a rapid initial growth com-

pared with the MJO for cases of strong ISO convection.

In contrast, Seo et al. (2005) reported that for cases of

strong ISO convection, the forecast skill level of the ISO

in the NCEP GFS model is higher during summer than

in winter. The prediction skill of the ISO in the NCEP

GFS model is only ;7 days (measured by the anomaly

correlation), indicating that large deficiencies exist in

the NCEP GFS model. Model deficiencies would

strongly influence estimates of the prediction skill of the

BSISO and MJO. In addition, even if anomaly correla-

tion is a useful measure, it can yield erroneously high

scores when the phases of intraseasonal variability are

well predicted but the amplitude is poorly predicted.

The application of observational data in the present

study means that we exclude the influence of model

deficiencies, presumably ensuring a more reliable result.

We estimated the potential predictability of the BSISO

and MJO using indices of combined fields of OLR and

850-hPa winds, whereas Seo et al. (2005) estimated the

skill and potential predictability of the BSISO and MJO

using zonal winds at 850 and 200 hPa and OLR sepa-

rately, which may explain the discrepancy between ours

results and those of Seo et al. (2005).

Among the four phases of the MJO, the error growth

associated with the PC22 is slowest, indicating a smaller

FIG. 8. As in Fig. 2, but for (a) EOF3, (b) EOF4, and (c) PC3 and PC4 from 1 May 1987 to

30 Sep 1987.

2432 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



prediction error when MJO convection is initially located

over Africa and the Indian Ocean. During the period

when the convection anomaly forms over these regions,

and subsequently strengthens and moves eastward, it is

relatively easy to capture the evolution of the MJO with

a small prediction error. The enhanced convection that is

initially located over the eastern Indian Ocean and the

Maritime Continent (PC11) also yields a low rate of

error growth. Among the four extreme phases of the

MJO, the error growth appears to be most rapid during

the period when the convection shows a gradual decay in

the western Pacific and when the MJO signal is dimin-

ishing (PC12; Fig. 15b). The enhanced convection that is

initially located over the western Pacific (PC21) pro-

duces an initial error growth that is slower than that of

PC12 but faster than that of PC11.

Among the four extreme phases of the BSISO, the

PC22 phase shows a most rapid growth in initial error,

whereas the PC21 phase shows the slowest growth [Fig.

15a; i.e., the error growth is slow when convection

anomalies are initially located over the northern Indian

Ocean and the Maritime Continent (PC21), whereas it

is rapid when convection anomalies are initially located

over the South China Sea and the western Pacific, and

subsequently decay near southern China (PC22)]. The

enhanced convection that is initially located over the

eastern Indian Ocean (PC11) produces an initial error

growth similar to or slightly slower than that of PC22.

The error growth is generally rapid when the BSISO and

MJO enter the decaying phase (when ISO signals are

weak), whereas it is slow when convection anomalies of

the BSISO and MJO are located in upstream regions

(when ISO signals are strong).

Previous studies have investigated the dependence

of ISO predictability on various phases. For example,

Waliser et al. (2003) performed a dynamic potential

FIG. 9. As in Fig. 3, but for mean error growth of the vector Z in

the two-dimensional phase space defined by the first three PCs of

EOF analysis of combined OLR and 850-hPa winds during summer

and winter.

FIG. 10. (a) Probability distribution of the predictability limits

based on filtered background noise, which has the same spectral

characteristics as two PCs associated with the first two EOFs of

combined OLR and 850-hPa winds during the boreal summer.

(b) As in (a), but for the boreal winter.
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predictability experiment using the NASA Goddard

Laboratory for the Atmospheres (GLA) general circu-

lation model (GCM), and Seo et al. (2005) performed an

NCEP GFS forecast experiment. The results of these

studies are model dependent, to the extent that different

models even yield the opposite conclusions. Some of the

present results obtained from observational data are

similar to those obtained using models, although other

results are dissimilar and some are even contradictory.

Further study is necessary to explain the differences

between the results obtained from observational data

and those obtained from various models.

5. Summary

This study investigated differences in the predictability

limits of the BSISO and MJO using the NLLE approach,

which provides an estimate of atmospheric predict-

ability based on observational data. The PC time series

of the two leading EOFs of the combined filtered OLR

and 850-hPa winds during the extended summer (MJJAS)

and extended winter (NDJFM) are used as an index of

the BSISO and MJO activity, respectively. The poten-

tial predictability limit of the BSISO is about 32 days,

comparable to (but slightly lower than) that of the MJO

(about 34 days). During the early phase of error growth,

the initial error of the BSISO grows more rapidly than

does that of the MJO, possibly related to the relatively

complex spatial variability in BSISO structure. Similar

results were found for the filtered 200-hPa velocity po-

tential, revealing that the potential predictability limits

of the BSISO and MJO are similar (;32 days). However,

the limits estimated using bandpass-filtered data may

overestimate the predictability of the ISO because of the

use of time filtering. Filtered noise with the same spec-

tral characteristics as the BSISO and MJO shows a pre-

dictability of about 1 week. Our investigation of the

predictability of the real-time daily MJO index (Wheeler

and Hendon 2004) revealed that the upper limits of the

FIG. 11. As in Fig. 3, but for mean error growth of the vector Z in

the two-dimensional phase space defined by the daily RMM index.
FIG. 12. As in Fig. 11, but for mean error growth of the vector Z

in the two-dimensional phase space defined by the pentad-mean

RMM index.
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forecast skill in real-time predictions of the BSISO and

MJO are approximately 16 and 18 days, respectively. The

use of pentad-mean RMM indices extends the pre-

dictability limit of the BSISO and MJO.

We used the NLLE algorithm to perform a quanti-

tative analysis of the spatial distribution of the po-

tential predictability limit of the combined fields of

the bandpass-filtered OLR and 850-hPa winds during

summer and winter. Throughout the tropics, the po-

tential predictability limit of the TISV ranges from

about 28 to 37 days during both summer and winter. The

spatial distribution of the limit appears to depend on

the season. During summer, the limit is relatively low

over regions where the TISV is most active, whereas it

is relatively high over the North Pacific, the North At-

lantic, southern Africa, and South America. The spatial

distribution of the limit during winter is approximately

the opposite of that during summer. For strong phases

of ISO convection, the initial error of the BSISO gen-

erally shows a more rapid growth than that of the MJO.

The error growth is rapid when the BSISO and MJO

enter the decaying phase (when ISO signals are weak),

whereas it is slow when convection anomalies of the

BSISO and MJO are located in upstream regions (when

ISO signals are strong).

The present work contains several limitations. First,

the total variance explained by the two leading EOFs

of combined OLR and 850-hPa winds in the present

FIG. 13. Spatial distributions of the potential predictability limit

of the combined filtered (30–80 days) OLR and 850-hPa winds in

the tropics (258S–258N) during the (a) extended boreal summer

(MJJAS) and (b) extended boreal winter (NDJFM).

FIG. 14. Percentage of 30–80-day variance to total variance for

the (a) extended boreal summer and (b) extended boreal winter

OLR field in the tropics (258S–258N).

FIG. 15. Mean error growth of the vector Z in the two-dimensional

phase space defined by the first two PCs of EOF analysis of the

combined filtered OLR and 850-hPa winds for the different

phases of the (a) BSISO during summer and the (b) MJO during

winter.
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work is relatively small (,20%), which limits the rep-

resentativeness of the corresponding PC time series

used as an index of BSISO and MJO activity. The use

of more PCs to calculate the NLLE would be equiva-

lent to increasing the number of spatial degrees of

freedom. Clearly, for a relatively short observation

period, it is difficult to find good analogs for a large

number of spatial degrees of freedom; consequently,

the application of the NLLE approach is limited in this

situation. Further study is required to assess differ-

ences in the predictability of the BSISO and MJO,

using a more representative index of ISO activity.

Second, the ISO predictability obtained in the present

study provides only an estimate of the average pre-

dictability of the ISO. Little is known of the physical

processes that give rise to the predictability of the

BSISO and MJO, which limits our understanding of the

BSISO and MJO and hinders their simulation and

forecasting. To improve our understanding of the pre-

dictability of the TISV, a more realistic model of the

ISO is required, as well as a detailed analysis of tropical

observational data.
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APPENDIX

An Algorithm for the NLLE Estimation from
Observational Data

The experimental or observational data of a single

variable of an n-dimensional chaotic system (e.g.,

the time series of a variable x is given by fx(ti),

i 5 0, 1, 2, . . . . . . , m 2 1g where m represents the length

of the time series), an algorithm that allows the estima-

tion of the mean NLLE and the mean RGIE from the

experimental or observational time series is given by the

following steps.

Step 1: Taking x(t0) as the reference point at the time

t0, we first seek the local dynamical analog x(tk) of the

reference point from the dataset. Two distances (i.e.,

the initial distance between two points and the evolu-

tionary distance between their trajectories within a short

initial period) are used to measure the degree of simi-

larity between the points. All points x(t
j
)(jt

j
2 t

0
j . 90,

ensuring that a good analog pair is not merely due to-

persistence) in the dataset form a set S. The initial dis-

tance d
i

between the points x(t
0
) and x(t

j
) is given by

di 5 jx(t0) 2 x(tj)j . (A1)

We assume that the evolutions of two points are anal-

ogous over a very short time t if they are analogous at

the initial time. The choice of the short time interval t

depends on the persistence of the variable x; if the per-

sistence is low, the time over which two initially close

points remain analogous is relatively short. The time

taken for autocorrelations of the variable x to drop to 0.9

can be regarded as a rough estimate of the short time

interval t. A high value (0.9) of autocorrelation is chosen

to ensure a short time interval (the results were found to

be insensitive to the selected value). Within the short

interval t (t 5 KD, where D is the sampling interval of

the time series), the evolutionary distance de between

the two points x(t
0
) and x(t

j
) is given by

de 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K 1 1
�
K

i50
[x(ti) 2 x(tj1i)]2

vuut
, (A2)

where d
i
is the amount of the initial separation between

the two points x(t
0
) and x(t

j
), while d

e
is the evolutionary

distance between their trajectories over a short initial

period. The total distance dt, considering not only the

initial distance but also the evolutionary distance, is

found by adding di and de:

dt 5 di 1 de. (A3)

If dt is very small, it is highly likely that the points x(t0)

and x(t
j
) are analogous at the initial time. Of course, this

approach is unlikely to exclude the possibility that only

the variable x remains close, whereas other variables

evolve very differently over time, especially for high-

dimensional dynamical systems; however, our experi-

mental results indicate that this possibility is low (Li and

Ding 2011). For two nonanalogous initial states, the

value of dt is generally large. The constraint of the total

distance d
t

allows us to exclude a large portion of all

points with large initial distances, thereby helping us to

find a truly analog of the reference point. For every point

x(tj) in the set S, the value of dt can be determined. The

nearest neighbor (local dynamical analog) x(tk) of the

reference point x(t0) can be chosen from the set S only if

the dt is the minimum. Then, the initial distance between

x(t0) and x(tk) is denoted as follows:
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L(t0) 5 jx(t0) 2 x(tk)j . (A4)

Step 2: At the time ti 5 t0 1 i 3 D (i 5 1, 2, 3, . . . . . .),

x(t0) will have evolved to x(ti) along the reference tra-

jectory, and x(t
k
) will have evolved into x(t

k1i
). The

initial difference L(t
0
) will have become

L(ti) 5 jx(ti) 2 x(tk1i)j . (A5)

The growth rate of the initial error during the time ti 2 t0

is

j1(ti) 5
1

ti 2 t0
ln

L(ti)

L(t0)
. (A6)

With i gradually increasing, we can obtain the variation

of j
1
(t

i
) as a function of the evolution time t

i
.

Step 3: Taking x(t
1
) as the reference state and re-

peating the steps 1 and 2 above, we obtain the variation

of j2(ti) as a function of the evolution time ti.

Step 4: The above procedure is repeated until the

reference trajectory has traversed the entire data file. By

taking the average of the error growth rates at all ref-

erence points, we obtain the mean NLLE:

j(ti) 5
1

N
�
N

k51
jk(ti), (i 5 1, 2, 3, . . . . . . ), (A7)

where N (N , m) is the total number of reference points

on the reference trajectory.

Step 5: From Eqs. (A6) and (A7), we obtain the ap-

proximation of the mean relative growth of initial error

(RGIE):

F(ti) 5 exp[j(ti)(ti 2 t0)], (i 5 1, 2, 3, . . . . . . ). (A8)

By investigating the evolution of F(ti) with increasing ti,

we can estimate the mean predictability limit of the

variable x.
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